Author | Title | Year | Journal/Proceedings | DOI/URL | |
---|---|---|---|---|---|
Matthias Kahl, Andreas Kroll | Extending Regularized Least Squares Support Vector Machines for Order Selection of Dynamical Takagi-Sugeno Models | 2020 | IFAC-PapersOnLine, 21th IFAC World Congress, vol. 53, no. 2, pp. 1182-1187, Elsevier, Berlin, Germany, IFAC | ||
Abstract: In this paper, the problem of order selection for nonlinear dynamical Takagi-Sugeno (TS) fuzzy models is adressed. It is solved by reformulating the TS model in its Linear Parameter Varying (LPV) form and applying an extension of a recently proposed Regularized Least Squares Support Vector Machine (R-LSSVM) technique for LPV models. For that, a nonparametric formulation of the TS identi cation problem is proposed which uses data-dependent basis functions. By doing so, the partition of unity of the TS model is preserved and the scheduling dependencies of the model are obtained in a nonparametric manner. For the local order selection, a regularization approach is used which forces the coeffcient functions of insignifcant values of the lagged input and output towards zero. | |||||
BibTeX: @inproceedings{Kahl-IFAC-2020, abstract = {In this paper, the problem of order selection for nonlinear dynamical Takagi-Sugeno (TS) fuzzy models is adressed. It is solved by reformulating the TS model in its Linear Parameter Varying (LPV) form and applying an extension of a recently proposed Regularized Least Squares Support Vector Machine (R-LSSVM) technique for LPV models. For that, a nonparametric formulation of the TS identi cation problem is proposed which uses data-dependent basis functions. By doing so, the partition of unity of the TS model is preserved and the scheduling dependencies of the model are obtained in a nonparametric manner. For the local order selection, a regularization approach is used which forces the coeffcient functions of insignifcant values of the lagged input and output towards zero.}, address = {Berlin, Germany}, author = {Matthias Kahl and Andreas Kroll}, booktitle = {21th IFAC World Congress}, journal = {IFAC-PapersOnLine}, language = {english}, mrtnote = {peer,SFS_TS}, number = {2}, organization = {IFAC}, owner = {duerrbaum}, pages = {1182--1187}, publisher = {Elsevier}, timestamp = {2019.11.25}, title = {Extending Regularized Least Squares Support Vector Machines for Order Selection of Dynamical Takagi-Sugeno Models}, volume = {53}, year = {2020} } |
|||||
Matthias Kahl | Zur Strukturselektion bei dynamischen lokal-affinen Multi-Modellen mittels statistischer Methoden [BibTeX] |
2018 | 52. Regelungstechnisches Kolloquium, Boppard, Fraunhofer IOSB, 21.-23. Februar | URL | |
BibTeX: @conference{Boppard2018, author = {Matthias Kahl}, booktitle = {52. Regelungstechnisches Kolloquium, Boppard}, month = {21.-23. Februar}, mrtnote = {nopeer,FuzzyIdControl,SFS_TS}, organization = {Fraunhofer IOSB}, owner = {duerrbaum}, timestamp = {2016.02.22}, title = {Zur Strukturselektion bei dynamischen lokal-affinen Multi-Modellen mittels statistischer Methoden}, url = {https://www.iosb.fraunhofer.de/?boppard}, year = {2018} } |
|||||
Kahl, Matthias, Kroll, Andreas | Structure Identification of Dynamical Takagi-Sugeno Fuzzy Models by Using LPV Techniques [BibTeX] |
2018 | Archives of Data Science, Series A (Online First), vol. 5, no. 1, pp. A19, 17 S. online | DOI | |
BibTeX: @article{ECDA2018_full, author = {Kahl, Matthias and Kroll, Andreas}, doi = {10.5445/KSP/1000087327/19}, issn = {2363-9881}, journal = {Archives of Data Science, Series A (Online First)}, language = {english}, mrtnote = {peer,SFS_TS}, number = {1}, pages = {A19, 17 S. online}, title = {Structure Identification of Dynamical Takagi-Sugeno Fuzzy Models by Using LPV Techniques}, volume = {5}, year = {2018} } |
|||||
Matthias Kahl, Andreas Kroll, Robert Kästner, Manfried Sofsky | Application of model selection methods for the identification of a dynamic boost pressure model [BibTeX] |
2015 | Proceedings of the 17th IFAC Symposium on System Identification (SysID), pp. 829-834, Beijing, China, October 19-21 | DOI | |
BibTeX: @inproceedings{KahlSysID2015, address = {Beijing, China}, author = {Matthias Kahl and Andreas Kroll and Robert Kästner and Manfried Sofsky}, booktitle = {Proceedings of the 17th IFAC Symposium on System Identification ({SysID})}, doi = {doi:10.1016/j.ifacol.2015.12.232}, language = {english}, month = {October 19-21}, mrtnote = {peer,DynModNL,SFS_TS}, owner = {duerrbaum}, pages = {829-834}, timestamp = {2015.03.25}, title = {Application of model selection methods for the identification of a dynamic boost pressure model}, year = {2015} } |
|||||
Matthias Kahl, Andreas Kroll, Robert Kästner, Manfried Sofsky | Zur automatisierten Auswahl signifikanter Regressoren für die Identifikation eines dynamischen Ladedruckmodells [BibTeX] |
2014 | 24. Workshop Computational Intelligence, pp. 33-53, Schriftenreihe des Instituts für Angewandte Informatik / Automatisierungstechnik, KIT Scientific Publishing, Dortmund, GMA-FA 5.14 "Computational Intelligence" und GI-FG "Fuzzy-Systeme und Soft-Computing", 27.-28. November | DOI | |
BibTeX: @inproceedings{KahlGMA2014, address = {Dortmund}, author = {Matthias Kahl and Andreas Kroll and Robert Kästner and Manfried Sofsky}, booktitle = {24. Workshop Computational Intelligence}, doi = {10.5445/KSP/1000043427}, editor = {Frank Hoffmann and Eike Hüllermeier}, month = {27.-28. November}, mrtnote = {nopeer,DynModNL,pke,SFS_TS}, organization = {GMA-FA 5.14 "Computational Intelligence" und GI-FG "Fuzzy-Systeme und Soft-Computing"}, owner = {kahl}, pages = {33-53}, publisher = {KIT Scientific Publishing}, series = {Schriftenreihe des Instituts für Angewandte Informatik / Automatisierungstechnik}, timestamp = {2014.09.23}, title = {Zur automatisierten Auswahl signifikanter Regressoren für die Identifikation eines dynamischen Ladedruckmodells}, year = {2014} } |
Created by JabRef on 02.12.24.