Author | Title | Year | Journal/Proceedings | DOI/URL | |
---|---|---|---|---|---|
González, J.H.R. | Automatic 3D Visualization and Tracking of Gaseous Organic Volatile Compound Emissions by means of Spatial and Temporal Information from an Optical Gas Imaging Stereo System [BibTeX] |
2021 | Schriftenreihe Mess- und Regelungstechnik der Universität Kassel (11) , kassel university press , August , Dissertation | PhD-13 | |
BibTeX: @phdthesis{2021-Rangel-PhD-3D_Visualisation_Gas, author = {Johannes Havid Rangel González} , title = {Automatic 3D Visualization and Tracking of Gaseous Organic Volatile Compound Emissions by means of Spatial and Temporal Information from an Optical Gas Imaging Stereo System} , publisher = {kassel university press} , school = {Schriftenreihe Mess- und Regelungstechnik der Universität Kassel} , type = {Dissertation} , year = {2021} , number = {11} , mrtnr = {PhD-13} } |
|||||
Kroll, A. & Rangel, J. | Zur automatisierten 3D-Visualisierung und zum Tracken von gasförmigen Kohlen- wasserstoffen anhand räumlich-zeitlicher Informationen eines prototypischen katadioptrischen Stereokamerasystems - Schlussbericht [BibTeX] |
2020 | (TR-029) , Universität Kassel , September , Technischer Bericht | TR-029 | |
BibTeX: @techreport{3D_Gas_Schlussbericht_2020, author = {Andreas Kroll and Johannes Rangel} , title = {Zur automatisierten 3D-Visualisierung und zum Tracken von gasförmigen Kohlen- wasserstoffen anhand räumlich-zeitlicher Informationen eines prototypischen katadioptrischen Stereokamerasystems - Schlussbericht} , type = {Technischer Bericht} , year = {2020} , number = {TR-029} , address = {Universität Kassel} , mrtnr = {TR-029} } |
|||||
Kroll, A. & Rangel, J. | Verfahren und Vorrichtung zur Bestimmung räumlicher Informationen einer gasförmigen Struktur | 2018 | (DE 10 2018 112479 B3) , Universität Kassel , EP 3573023 B1 | URL | |
Abstract: Gegenstand der Erfindung ist ein Verfahren zur Bestimmung räumlicher Informationen einer gasförmigen Struktur (10), insbesondere einer Gaswolke, wobei das Verfahren wenigstens die folgenden Schritte umfasst: Bereitstellen (50) einer ersten Kamera (1) zur Aufnahme der gasförmigen Struktur (10) aus einer ersten Aufnahmeachse (A) und einer zweiten Kamera (2) zur Aufnahme der gasförmigen Struktur (10) aus einer zweiten Aufnahmeachse (B) oder Bereitstellen einer einzigen Kamera mit einem Strahlteiler, über den die gasförmige Struktur (10) aus der ersten Aufnahmeachse (A) und der zweiten Aufnahmeachse (B) aufgenommen wird, Erfassen (100) eines ersten Aufnahmebildes (A1) aus Richtung der ersten Aufnahmeachse (A) und eines zweiten Aufnahmebildes (B1) aus Richtung der zweiten Aufnahmeachse (B), Ableiten von Merkmalen (102) über die gasförmige Struktur (10) aus den Aufnahmebildern (A1, B1) mittels a) Differenzbildern umfassend Konzentrationsänderungen über der Zeit in der gasförmigen Struktur (10) und b) optischen Flussbildern umfassend räumliche Konzentrationsverschiebungen in der gasförmigen Struktur (10), Fusionieren und Bestimmen (103) der Korrespondenzen der abgeleiteten Merkmale mittels einer Korrespondenzbestimmung und Erzeugen eines Disparitätsbildes und Ableiten einer Bewegungsinformation über die gasförmige Struktur (10) aus der räumlichen Information (104) anhand des Disparitätsbil | |||||
BibTeX: @misc{DPatent2018, author = {Andreas Kroll and Johannes Rangel} , title = {Verfahren und Vorrichtung zur Bestimmung räumlicher Informationen einer gasförmigen Struktur} , year = {2018} , number = {DE 10 2018 112479 B3} , address = {Universität Kassel} , note = {EP 3573023 B1} , url = {https://depatisnet.dpma.de/DepatisNet/depatisnet?window=1&space=menu&content=treffer&action=bibdat&docid=DE102018112479B3} } |
|||||
Rangel, J., Duenas, J., Schmoll, R. & Kroll, A. | On Evaluating deep-learning-based Optical Flow Methods for Gas Velocity Estimation with Optical Gas Imaging Cameras [BibTeX] |
2021 | Conference on Automated Visual Inspection and Machine Vision IV , SPIE. International Society for optics and photonics | DOI URL | |
BibTeX: @inproceedings{2021-Rangel-SPIE-Deep_Learning_Optical_Flow, author = {Johannes Rangel and Juan Duenas and Robert Schmoll and Andreas Kroll} , title = {On Evaluating deep-learning-based Optical Flow Methods for Gas Velocity Estimation with Optical Gas Imaging Cameras} , booktitle = {Conference on Automated Visual Inspection and Machine Vision IV} , year = {2021} , url = {https://spie.org/EOM/conferencedetails/automated-visual-inspection} , doi = {http://dx.doi.org/10.1117/12.2591903} } |
|||||
Rangel, J. & Kroll, A. | On Obtaining Reliable Spatial Information from Gas Structures with a Stereo Camera System [BibTeX] |
2018 | International Conference on Sensing Technology (ICST) , Limerick, Ireland , 3.-6. Dezember | ||
BibTeX: @inproceedings{JR_ICST_2018, author = {Johannes Rangel and Andreas Kroll} , title = {On Obtaining Reliable Spatial Information from Gas Structures with a Stereo Camera System} , booktitle = {International Conference on Sensing Technology (ICST)} , year = {2018} , address = {Limerick, Ireland} } |
|||||
Rangel, J. & Kroll, A. | Characterization and Calibration of a Stereo Gas Camera System for Obtaining Spatial Information of Gas Structures [BibTeX] |
2018 | IEEE Sensors Applications Symposium (SAS) , Seoul, Korea , 12.-14. März | ||
BibTeX: @inproceedings{JR_SAS_2018, author = {Johannes Rangel and Andreas Kroll} , title = {Characterization and Calibration of a Stereo Gas Camera System for Obtaining Spatial Information of Gas Structures} , booktitle = {IEEE Sensors Applications Symposium (SAS)} , year = {2018} , address = {Seoul, Korea} } |
|||||
Rangel, J. & Kroll, A. | Characterization and Evaluation of Spatial Jitter's Influence on the Intrinsic Geometric Calibration of an Infrared Camera for Gas Visualization [BibTeX] |
2017 | IEEE Sensors Applications Symposium (SAS) , Glassboro, USA , 13.-15. März | ||
BibTeX: @inproceedings{JR_SAS2017, author = {Johannes Rangel and Andreas Kroll} , title = {Characterization and Evaluation of Spatial Jitter's Influence on the Intrinsic Geometric Calibration of an Infrared Camera for Gas Visualization} , booktitle = {IEEE Sensors Applications Symposium (SAS)} , year = {2017} , address = {Glassboro, USA} } |
|||||
Rangel, J., Schmoll, R. & Kroll, A. | Catadioptric Stereo Optical Gas Imaging System for Scene Flow Computation of Gas Structures [BibTeX] |
2021 | IEEE Sensors Journal , Vol. 21 (5) , pp. 6811 - 6820 | DOI URL | |
BibTeX: @article{rangel_IEEEsensors_2020, author = {J. Rangel and R. Schmoll and A. Kroll} , title = {Catadioptric Stereo Optical Gas Imaging System for Scene Flow Computation of Gas Structures} , journal = {IEEE Sensors Journal} , year = {2021} , volume = {21} , number = {5} , pages = {6811 -- 6820} , url = {https://ieeexplore.ieee.org/document/9277592} , doi = {https://doi.org/10.1109/JSEN.2020.3042116} , issn = {1530-473X} } |
|||||
Rangel, J., Schmoll, R. & Kroll, A. | On Scene Flow Computation of Gas Structures with Optical Gas Imaging Cameras [BibTeX] |
2020 | IEEE Winter Conference on Applications of Computer Vision (WACV 2020) , pp. 174-182 , Snowmass Village, Colorado, USA , 2.-5. März | DOI URL | |
BibTeX: @inproceedings{Rangel2020, author = {J. Rangel and R. Schmoll and A. Kroll} , title = {On Scene Flow Computation of Gas Structures with Optical Gas Imaging Cameras} , booktitle = {IEEE Winter Conference on Applications of Computer Vision (WACV 2020)} , year = {2020} , pages = {174-182} , address = {Snowmass Village, Colorado, USA} , url = {https://ieeexplore.ieee.org/document/9093630} , doi = {http://dx.doi.org/10.1109/WACV45572.2020.9093630} , isbn = {978-1-7281-6554-7} } |
|||||
Rangel Gonzalez, J., Garzon, J., Sofrony, J. & Kroll, A. | Gas Leak Inspection Task Based on Thermal-Visual-Depth Images and a Depth-enhanced Gas Detection Strategy [BibTeX] |
2015 | Revista de Ingeniería Universidad de los Andes (42) , pp. 8-15 , June | URL | |
BibTeX: @article{2015_Rangel_RIUA, author = {Rangel Gonzalez, Johannes and Garzon, Julian and Sofrony, Jorge and Kroll, Andreas} , title = {Gas Leak Inspection Task Based on Thermal-Visual-Depth Images and a Depth-enhanced Gas Detection Strategy} , journal = {Revista de Ingeniería Universidad de los Andes} , year = {2015} , number = {42} , pages = {8-15} , url = {http://ojsrevistaing.uniandes.edu.co/ojs/index.php/revista/article/view/40} } |
|||||
Rangel González, J.H., Soldan, S. & Kroll, A. | 3D Thermal Imaging: Fusion of Thermography and Depth Cameras [BibTeX] |
2014 | 12th International Conference for Quantitative InfraRed Thermography (QIRT 2014) , Bordeaux, France , 7 - 11 July | URL | |
BibTeX: @inproceedings{2014-QIRT_JR, author = {Rangel González, Johannes Havid and Soldan, Samuel and Kroll, Andreas} , title = {3D Thermal Imaging: Fusion of Thermography and Depth Cameras} , booktitle = {12th International Conference for Quantitative InfraRed Thermography (QIRT 2014)} , year = {2014} , address = {Bordeaux, France} , url = {http://qirt2014.scientific-event.com/} } |
|||||
Schramm, S., Ebert, J., Rangel, J., Schmoll, R. & Kroll, A. | Iterative feature detection of a coded checkerboard target for the geometric calibration of infrared cameras [BibTeX] |
2021 | Journal of Sensors and Sensor Systems (JSSS) , Vol. 10 , pp. 207-218 | DOI URL | |
BibTeX: @article{Schramm2021JSSS, author = {Sebastian Schramm and Jannik Ebert and Johannes Rangel and Robert Schmoll and Andreas Kroll} , title = {Iterative feature detection of a coded checkerboard target for the geometric calibration of infrared cameras} , journal = {Journal of Sensors and Sensor Systems (JSSS)} , year = {2021} , volume = {10} , pages = {207--218} , url = {https://jsss.copernicus.org/articles/10/207/2021/} , doi = {http://dx.doi.org/10.5194/jsss-10-207-2021} } |
|||||
Schramm, S., Rangel, J., Aguirre Salazar, D., Schmoll, R. & Kroll, A. | Target Analysis for the Multispectral Geometric Calibration of Cameras in Visual and Infrared Spectral Range [BibTeX] |
2021 | IEEE Sensors , Vol. 21 (2) , pp. 2159-2168 | DOI URL | |
BibTeX: @article{SchrammRangel2021, author = {Schramm, Sebastian and Rangel, Johannes and Aguirre Salazar, Daniela and Schmoll, Robert and Kroll, Andreas} , title = {Target Analysis for the Multispectral Geometric Calibration of Cameras in Visual and Infrared Spectral Range} , journal = {IEEE Sensors} , year = {2021} , volume = {21} , number = {2} , pages = {2159-2168} , url = {https://ieeexplore.ieee.org/document/9178752} , doi = {http://dx.doi.org/10.1109/JSEN.2020.3019959} } |
|||||
Schramm, S., Rangel, J. & Kroll, A. | Data Fusion for 3D Thermal Imaging Using Depth and Stereo Camera for Robust Self-localization [BibTeX] |
2018 | IEEE Sensors Applications Symposium (SAS) , Seoul, Korea , 12.-14. März | DOI URL | |
BibTeX: @inproceedings{SS_SAS2018, author = {Sebastian Schramm and Johannes Rangel and Andreas Kroll} , title = {Data Fusion for 3D Thermal Imaging Using Depth and Stereo Camera for Robust Self-localization} , booktitle = {IEEE Sensors Applications Symposium (SAS)} , year = {2018} , address = {Seoul, Korea} , url = {https://ieeexplore.ieee.org/document/8336740/} , doi = {https://doi.org/10.1109/SAS.2018.8336740} } |
|||||
Soldan, S., Rangel, J. & Kroll, A. | An Overview of Calibration Boards for the Geometric Calibration of Thermal Cameras | 2011 | InfraR&D 2011 Proceedings Volume 6 , pp. 79-83 , Hannover, Germany , 6. - 7. April. | URL | |
Abstract: In data fusion of imaging sources the knowledge about the intrinsic and extrinsic parameters of the camera is essential to avoid correspondence problems (i.e. matching up the corresponding points of two images acquired with some displacement disparity). A common way to determine these parameters is the use of a calibration board with known characteristics that is placed at different orientations in front of the camera. For normal cameras in the visible spectrum simple planar patterns in black and white color (like chessboards or dots in a grid arrangement) have been used as test fields with great success. For thermal cameras however these calibration targets don't work due to the even thermal distribution. This poster is motivated by an inspection task in an unknown environment where the fusion of data from a thermography camera, a normal camera and a laser range finder is desired. The correspondence problem is stated and a structured overview of different calibration boards that have been used for geometric calibration of thermography cameras in literature is presented. All these solutions seem to be unnecessarily complicated for a one-time calibration. Therefore own ideas and experimental results with a simple and cheap calibration board that provides sufficient accuracy are provided. | |||||
BibTeX: @inproceedings{INFRAR&D_2011, author = {Samuel Soldan and Johannes Rangel and Andreas Kroll} , title = {An Overview of Calibration Boards for the Geometric Calibration of Thermal Cameras} , booktitle = {InfraR&D 2011 Proceedings Volume 6} , year = {2011} , pages = {79-83} , address = {Hannover, Germany} , url = {http://www.infrarottraining.de/infra/} } |
Created by JabRef on 19/11/2021.