QuickSearch:   Number of matching entries: 0.

Search Settings

    AuthorTitleYearJournal/Proceedings DOI/URL
    Gringard, M. & Kroll, A. On considering the output in space-filling test signal designs for the identification of dynamic Takagi-Sugeno models 2020 21st IFAC World Congress , Berlin, Germany , 12-17. July , IFAC   URL  
    Abstract: In this contribution the optimal experiment design for the identification of linear affine Takagi-Sugeno (TS) models is discussed. The parameters of these models can be separated into local model and partition parameters which also allows for a separation of the design. The presented optimal design is based on the Fisher Information Matrix (FIM) and its objective is to minimize the parameter estimation uncertainty. In this contribution parameters of a standard test signal type (multi-step) are optimized to achieve this objective. The effectivity of FIM-based designs for nonlinear models depends on initial identification including structural decisions. The general functionality of the presented method is demonstrated on a case study.
    BibTeX:
    	@inproceedings{GringardIFAC2020,
    	   author = {Matthias Gringard and Andreas Kroll}
    	  , title = {On considering the output in space-filling test signal designs for the identification of dynamic Takagi-Sugeno models}
    	  , booktitle = {21st IFAC World Congress}
    	  
    	  
    	  
    	  
    	  , year = {2020}
    	  
    	  
    	  
    	  , address = {Berlin, Germany}
    	  
    	  
    	  , url = {https://www.ifac2020.org/}
    	  
    	  
    	  
    	   } 
    	
    Gringard, M. & Kroll, A. Zur Homogenisierung von Testsignalen für die nichtlineare Systemidentifikation 2019 at -- Automatisierungstechnik , Vol. 67 (10) , pp. 820-832    
    BibTeX:
    	@article{GringardAT2019,
    	   author = {Matthias Gringard and Andreas Kroll}
    	  , title = {Zur Homogenisierung von Testsignalen für die nichtlineare Systemidentifikation}
    	  
    	  , journal = {at -- Automatisierungstechnik}
    	  
    	  
    	  
    	  , year = {2019}
    	  , volume = {67}
    	  , number = {10}
    	  , pages = {820--832}
    	  
    	  
    	  
    	  
    	  
    	  
    	  
    	   } 
    	
    Gringard, M. & Kroll, A. Zum optimalen online Testsignalentwurf für die Identifikation dynamischer TS-Modelle: Steuerfunktionen zur optimalen Schätzung der Partitionsparameter 2018 28. Workshop Computational Intelligence , pp. 39 - 60 , KIT Scientific Publishing , Dortmund , 29.-30. November , GMA-FA 5.14   DOI URL  
    BibTeX:
    	@inproceedings{GringardGMA2018,
    	   author = {Matthias Gringard and Andreas Kroll}
    	  , title = {Zum optimalen online Testsignalentwurf für die Identifikation dynamischer TS-Modelle: Steuerfunktionen zur optimalen Schätzung der Partitionsparameter}
    	  , booktitle = {28. Workshop Computational Intelligence}
    	  
    	  , publisher = {KIT Scientific Publishing}
    	  
    	  
    	  , year = {2018}
    	  
    	  
    	  , pages = {39 -- 60}
    	  , address = {Dortmund}
    	  
    	  
    	  , url = {http://www.rst.e-technik.tu-dortmund.de/cms/de/Veranstaltungen/GMA-Fachausschuss/index.html}
    	  , doi = {http://dx.doi.org/10.5445/KSP/1000085935}
    	  , isbn = {9783731508458}
    	  
    	   } 
    	
    Gringard, M. & Kroll, A. Optimal Experiment Design for Identifying Dynamical Takagi-Sugeno Models with Minimal Parameter Uncertainty 2018 18th IFAC Symposium on System Identification , Stockholm, Sweden , 09-11. July , IFAC   URL  
    Abstract: In this contribution the optimal experiment design for the identification of linear affine Takagi-Sugeno (TS) models is discussed. The parameters of these models can be separated into local model and partition parameters which also allows for a separation of the design. The presented optimal design is based on the Fisher Information Matrix (FIM) and its objective is to minimize the parameter estimation uncertainty. In this contribution parameters of a standard test signal type (multi-step) are optimized to achieve this objective. The effectivity of FIM-based designs for nonlinear models depends on initial identification including structural decisions. The general functionality of the presented method is demonstrated on a case study.
    BibTeX:
    	@inproceedings{GringardSYSID2018,
    	   author = {Matthias Gringard and Andreas Kroll}
    	  , title = {Optimal Experiment Design for Identifying Dynamical Takagi-Sugeno Models with Minimal Parameter Uncertainty}
    	  , booktitle = {18th IFAC Symposium on System Identification}
    	  
    	  
    	  
    	  
    	  , year = {2018}
    	  
    	  
    	  
    	  , address = {Stockholm, Sweden}
    	  
    	  
    	  , url = {https://www.ifac-control.org/events/system-identification-18th-sysid-2018}
    	  
    	  
    	  
    	   } 
    	
    Gringard, M. & Kroll, A. Zum Optimalen Offline Testsignalentwurf für die Identifikation dynamischer TS-Modelle: Multistufensignale für unsicherheitsminimierte Konklusionsparameter 2017 27. Workshop Computational Intelligence , KIT Scientific Publishing , Dortmund , 23.-24. November , GMA-FA 5.14   DOI URL  
    BibTeX:
    	@inproceedings{GringardGMA2017,
    	   author = {Matthias Gringard and Andreas Kroll}
    	  , title = {Zum Optimalen Offline Testsignalentwurf für die Identifikation dynamischer TS-Modelle: Multistufensignale für unsicherheitsminimierte Konklusionsparameter}
    	  , booktitle = {27. Workshop Computational Intelligence}
    	  
    	  , publisher = {KIT Scientific Publishing}
    	  
    	  
    	  , year = {2017}
    	  
    	  
    	  
    	  , address = {Dortmund}
    	  
    	  
    	  , url = {http://www.rst.e-technik.tu-dortmund.de/cms/de/Veranstaltungen/GMA-Fachausschuss/index.html}
    	  , doi = {http://dx.doi.org/10.5445/KSP/1000085935}
    	  , isbn = {9783731507260}
    	  
    	   } 
    	
    Gringard, M. & Kroll, A. On the systematic parametrization of APRBS and multisine test signals for nonlinear system identification 2016 26. Workshop Computational Intelligence , pp. 119-138 , KIT Scientific Publishing , Dortmund , 24.-25. November , GMA-FA 5.14   DOI URL  
    BibTeX:
    	@inproceedings{GringardGMA2016,
    	   author = {Matthias Gringard and Andreas Kroll}
    	  , title = {On the systematic parametrization of APRBS and multisine test signals for nonlinear system identification}
    	  , booktitle = {26. Workshop Computational Intelligence}
    	  
    	  , publisher = {KIT Scientific Publishing}
    	  
    	  
    	  , year = {2016}
    	  
    	  
    	  , pages = {119-138}
    	  , address = {Dortmund}
    	  
    	  
    	  , url = {http://www.rst.e-technik.tu-dortmund.de/cms/de/Veranstaltungen/GMA-Fachausschuss}
    	  , doi = {http://dx.doi.org/10.5445/KSP/1000060007}
    	  , isbn = {9783731505884}
    	  
    	   } 
    	
    Gringard, M. & Kroll, A. On the parametrization of APRBS and multisine test signals for the identification of nonlinear dynamic TS-models 2016 IEEE Symposium Series of Computational Intelligence 2016 , pp. 39 - 60 , Athens, Greece , 06.-09. December , IEEE   URL  
    BibTeX:
    	@inproceedings{GringardSSCI2016,
    	   author = {Matthias Gringard and Andreas Kroll}
    	  , title = {On the parametrization of APRBS and multisine test signals for the identification of nonlinear dynamic TS-models}
    	  , booktitle = {IEEE Symposium Series of Computational Intelligence 2016}
    	  
    	  
    	  
    	  
    	  , year = {2016}
    	  
    	  
    	  , pages = {39 -- 60}
    	  , address = {Athens, Greece}
    	  
    	  
    	  , url = {http://ssci2016.cs.surrey.ac.uk/IEEE%202016.htm}
    	  
    	  
    	  
    	   } 
    	
    Gringard, M. & Kroll, A. Zur Homogenisierung von Breitbandtestsignalen für die nichtlineare Systemidentifikation am Beispiel eines nichtlinearen Stellantriebs 2015 25. Workshop Computational Intelligence , pp. 145 - 162 , KIT Scientific Publishing , Dortmund , 26.-27. November , GMA-FA 5.14   DOI URL  
    BibTeX:
    	@inproceedings{GringardGMA2015,
    	   author = {Matthias Gringard and Andreas Kroll}
    	  , title = {Zur Homogenisierung von Breitbandtestsignalen für die nichtlineare Systemidentifikation am Beispiel eines nichtlinearen Stellantriebs}
    	  , booktitle = {25. Workshop Computational Intelligence}
    	  
    	  , publisher = {KIT Scientific Publishing}
    	  
    	  
    	  , year = {2015}
    	  
    	  
    	  , pages = {145 -- 162}
    	  , address = {Dortmund}
    	  
    	  
    	  , url = {http://www.rst.e-technik.tu-dortmund.de/cms/de/Veranstaltungen/GMA-Fachausschuss/index.html}
    	  , doi = {http://dx.doi.org/0.5445/KSP/100004962}
    	  , isbn = {9783731504320}
    	  
    	   } 
    	
    Wittich, F., Gringard, M., Kahl, M., Kroll, A., Niendorf, T. & Zinn, W. Datengetriebene Modellierung zur Prädiktion des Eigenspannungstiefenverlaufs beim Hartdrehen 2018 28. Workshop Computational Intelligence , pp. 61 - 81 , KIT Scientific Publishing , Dortmund , 29.-30. November , GMA-FA 5.14   URL  
    BibTeX:
    	@inproceedings{WittichGMA2018,
    	   author = {Felix Wittich and Matthias Gringard and Matthias Kahl and Andreas Kroll and Thomas Niendorf and Wolfgang Zinn}
    	  , title = {Datengetriebene Modellierung zur Prädiktion des Eigenspannungstiefenverlaufs beim Hartdrehen}
    	  , booktitle = {28. Workshop Computational Intelligence}
    	  
    	  , publisher = {KIT Scientific Publishing}
    	  
    	  
    	  , year = {2018}
    	  
    	  
    	  , pages = {61 -- 81}
    	  , address = {Dortmund}
    	  
    	  
    	  , url = {http://www.rst.e-technik.tu-dortmund.de/cms/de/Veranstaltungen/GMA-Fachausschuss/index.html}
    	  
    	  
    	  
    	   } 
    	

    Created by JabRef on 16/02/2021.